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Summary

1. Trends of animal populations are of great interest in ecology but cannot be directly observed
owing to imperfect detection. Binomial mixture models use replicated counts to estimate abun-

dance, corrected for detection, in demographically closed populations. Here, we extend these mod-
els to open populations and illustrate them using sand lizardLacerta agilis counts from the national
Dutch reptile monitoring scheme.

2. Our model requires replicated counts frommultiple sites in each of several periods, within which
population closure is assumed. Counts are described by a hierarchical generalized linear model,

where the state model deals with spatio-temporal patterns in true abundance and the observation
model with imperfect counts, given that true state. We used WinBUGS to fit the model to lizard

counts from 208 transects with 1–10 (mean 3) replicate surveys during each spring 1994–2005.
3. Our state model for abundance contained two independent log-linear Poisson regressions on

year for coastal and inland sites, and random site effects to account for unexplained heterogeneity.
The observation model for detection of an individual lizard contained effects of region, survey date,

temperature, observer experience and random survey effects.
4. Lizard populations increased in both regions but more steeply on the coast. Detectability
increased over the first few years of the study, was greater on the coast and for the most experienced

observers, and highest around 1 June. Interestingly, the population increase inland was not detect-
able when the observed counts were analysed without account of detectability. The proportional

increase between 1994 and 2005 in total lizard abundance across all sites was estimated at 86%
(95%CRI 35–151).

5. Synthesis and applications.Open-population binomial mixture models are attractive for studying
true population dynamics while explicitly accounting for the observation process, i.e. imperfect

detection. We emphasize the important conceptual benefit provided by temporal replicate observa-
tions in terms of the interpretability of animal counts.

Key-words: abundance, binomial mixture model, detectability, GLM, hierarchical model,
lizard, metapopulation design, monitoring, trend

Introduction

The study of population dynamics lies at the heart of ecology

(Andrewartha & Birch 1954; Krebs 2001). The simplest char-

acterization of population dynamics is by the magnitude of a

sustained population change, or trend. Population trends are

extremely important in conservation biology (Caughley 1994;

Norris 2004) and widely assessed in monitoring programmes

(Balmford, Green & Jenkins 2003; Gregory et al. 2005). Time-

series of counts of organisms are therefore analysed frequently

to infer trends or other temporal patterns, and the factors gov-

erning them, in populations where these counts have been con-

ducted (Meyer, Schmidt &Grossenbacher 1998; Lande, Engen

& Saether 2003).*Correspondence author. E-mail: marc.kery@vogelwarte.ch
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Unfortunately, observed counts cannot usually be equated

with true abundance; rather, it is useful to distinguish formally

between two linked, stochastic processes that together produce

the observed, raw counts. The first stochastic process is that

of the true biological state, about which inference is desired;

and the second is the observation process consisting of double-

counting, misidentification and overlooking, i.e. imperfect

detection, of individuals. Clearly, the observation process

affects the way in which the true state of a population is per-

ceived. Overlooking individuals in particular occurs in many

if not most studies of natural populations. Failure to properly

account for the observation process in the analysis of popula-

tion count data may lead one to overestimate true variation in

the biological process (Link &Nichols 1994), to underestimate

abundance (Schmidt 2005) and to obtain distorted inference

about patterns in the biological process such as the strength of

density dependence (Shenk, White & Burnham 1998), habitat

relations (Kéry 2004) or temporal trends (Hochachka &

Fielder 2008).

To improve inference from population counts about pat-

terns in the underlying biological process, such as trends, state-

space (or hierarchical) models honour the hierarchical genesis

of ecological field data. These models originate in the classical

structural time series literature (see e.g. Soldaat et al. 2007 for

an application) and formally partition the observed data into a

stochastic state and a stochastic observation component, and

may thus access features of the state, such as density-depen-

dence, free from effects of the observation process (Lande et al.

2003; de Valpine 2003; Dennis et al. 2006). However, they can

only describe, perhaps on a transformed scale such as the log,

random deviations of the observations around the mean of the

state and the expectation of the observation processes combined.

Assuming detection error dominates the observation process

and that detection probability is denoted p, the mean of the

modelled state process at time i, N’i, is the product of Ni and

the expectation E(p) of p, rather than abundance N alone.

Thus, these models cannot infer absolute abundance and its

dynamics unless one has additional information about the

observation process, such as that provided by replicate counts

(Royle 2004a), distance sampling (Buckland et al. 2001) or

capture–recapture data (Williams, Nichols & Conroy 2002).

Hence, in the presence of imperfect detection, this first kind of

hierarchical model contains only an implicit description of the

biological (state) process (Royle &Dorazio 2008, p. 16–17).

Inferences about the state process using such traditional

state-space models will be biased by any systematic pattern

present in the observation process. For instance, increasing

detection probability over time might lead one to falsely con-

clude an increasing population trend, even when accounting

for sampling variation about the product Np. Standardized

field protocols may help to make p constant and therefore to

prevent biased inference about apparent patterns in the state

that in reality are attributable to the observation process.How-

ever, even the tightest standardizationmay fail to produce con-

stant detection probability (Schmidt 2005; Brown, Hines &

Kéry 2007; Hochachka & Fielder 2008). To adjust inference

about population trends for distortions caused by systematic

variation in detection probability, Link & Sauer (1997, 2002)

developed hierarchical models that directly use information

about the observation process contained in measurable covari-

ates such as observer identity, start-up years or survey effort.

Thus, an important distinction of Link & Sauer’s work from

hierarchical models mentioned earlier is that they incorporate

information about the detection process, even if the latter is

not directly modelled. However, they cannot correct for effects

of detectability that are not contained inmeasured covariates.

Here, we develop a hierarchical model for trend estimation

in the presence of imperfect detection that contains an explicit

description of the state process. We build on a similar explicit

hierarchical model developed by Royle & Dorazio (2008,

pp. 4–7) which we extend considerably. By explicit hierarchical

model we mean that the quantities contained in our state pro-

cess have a clear biological meaning (Royle & Dorazio 2008);

we directly model abundance (N) and its change, rather than

the change of an index to abundance, such as the expected

count, that is confounded with detection. Furthermore, our

description of the observation process is a mechanistic repre-

sentation of the detection process leading to the observed

counts. Our model represents an extension of a closed-popula-

tion, binomial mixture model (Royle 2004a,b; Dodd &Doraz-

io 2004) to open populations and is applicable when counts are

available for multiple sites and multiple seasons, and when

there is some degree of replication within a season, when the

population is assumed closed. Our model is a hierarchical

extension of a generalized linear model (GLM) and hence

enjoys the flexibility of this class of models (McCullagh &Nel-

der 1989). We illustrate our model using counts of sand lizards

Lacerta agilis Linnaeus 1758 from the Dutch national reptile

monitoring scheme. Importantly, our analysis uncovers

increases in both Dutch regions, the coast and inland, while a

simple analysis of the population indices, i.e. the raw counts

without accounting for detectability, fails to reveal the trend

inland.

Methods

BINOMIAL MIXTURE MODELS FOR OPEN POPULATIONS

We first briefly review the simple binomial mixture model for a sin-

gle season before extending it to multiple seasons. We assume that

replicated counts cij are available from a number of sites (or tran-

sects, i) and surveys (j) conducted during a single season within

which the population at each site is assumed to be demographically

closed. We call this data format a metapopulation design, since the

same quantities are surveyed at a number of spatial replicates (Roy-

le 2004b; Royle & Dorazio 2006). Perhaps the conceptually sim-

plest description of counts obtained in a metapopulation design is

the hierarchical model that partitions the variation in cij into one

component due to spatial variation in the true numbers present at

each site, and observation error induced by imperfect detection.

This model is described by two simple conditional probability state-

ments:

State process : Nijki ! PoiðkiÞ eqn 1

Observation process : cijjNi ! BinðNi; pijÞ eqn 2
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That is, first, the spatial variation in the unobserved true state, local

population size or abundance (Ni), is described by a Poisson distribu-

tion with rate parameter ki. Second, given a particular realization of

the state process, repeated observations cij of the local population Ni

follow a binomial distribution with index parameter Ni and success

parameter pij. The latter is the per-individual detection probability,

which is assumed to be identical for all individuals within the same

site, but may vary by site i and survey j.

This basic hierarchical model first described by Royle (2004a) is a

simple hierarchical extension of a familiar Poisson GLM to account

for imperfect detection induced by pij < 1.Hence, the basic binomial

mixture model is represented by two coupled GLMs, where the first

(Poisson) GLM describes the only partially observed true state of the

population (i.e. local population size Ni) and the second (Binomial)

GLMdescribes the results of the observation process (cij), conditional

on the true stateNi.

Here, we generalize the basic binomial mixture model to open pop-

ulations where Ni is allowed to change; for instance, when counts are

conducted across several seasons (years). This generalization is con-

ceptually simple, but of great practical importance, since trends in

abundance are the focus of a large and increasing number ofmonitor-

ing schemes (Balmford, Green & Jenkins 2003; Gregory et al. 2005).

To accommodate the temporal dimension, an additional index k is

needed for year, resulting in cijk, the number (c) of individuals counted

at site i, during survey j and in year k (the ‘robust design’ sampling

protocol in capture–recapture studies; Williams et al. 2002). This

introduces slight changes into the description of the basic hierarchical

model (eqns 1 and 2).

The state process becomes Nik ! PoiðkikÞ, i.e. a separate, indepen-

dent Poisson intensity (kik) is assumed for each site i and year k. Ini-

tially, this does not stipulate any relationship in the state process

across years. However, a ubiquitous question in ecology, and espe-

cially in monitoring applications such as our case study, is that for

sustained change, which is typically answered by fitting some sort of

linear regression. Thus, to generalize the basicmodel tomultiple years

and to estimate a trend in the unobserved abundances, one may con-

sider the following extension of the state process:

Nik ! PoiðkikÞ eqn 3

logðkikÞ ¼ ai þ ri & ðk' 1Þ eqn 4

That is, the log-transform of the Poisson rate parameter kikin year k is
the sum of an intercept parameter ai, representing the log rate in year

1, and the effect of the annual population growth rate ri. Both param-

eters are indexed also by i, indicating they may differ by site. This is

the familiar log-linear Poisson regression model that forms the basis

of many analyses of count data (e.g. Link & Sauer 1997, 2002; Greg-

ory et al. 2005). It can easily be extended to include effects of other

explanatory variables on abundance by adding additional terms such

as bw · xikw to the right-hand side of equation 4, where bw represents

the coefficient and xikw the value of thew-th covariatemeasured at site

i in year k.

Similar extensions can be envisioned for the observation process

which becomes:

cijkjNik ! BinðNik; pijkÞ eqn 5

logitðpijkÞ ¼ aijk þ bw & xijkw eqn 6

Given a realized valueNik of the state process at site i in year k, the

logit transform of detection probability at site i, during survey j in

year k is represented by an intercept aijk plus the effect bw of the w-th

covariate with value xijkw.

To account for unobserved sources of variation (overdispersion) in

abundance or detection, random effects parameters may be added

into equations 4 and 6. Random effects for abundance would neces-

sarily be indexed by site i (and possibly also by year k), while for

detection, they may vary by any combination of site i, survey j and

year k. Customarily, they would be assumed to follow a zero-mean

normal distribution with variance r2 to be estimated from the data.

CASE STUDY: NATIONAL TRENDS IN DUTCH SAND

LIZARDS

The Dutch reptile monitoring scheme is a volunteer-based pro-

gramme launched in 1994 by RAVON and Statistics Netherlands

(Smit & Zuiderwijk 2003). It is based on transect counts replicated

typically seven times within each activity season (March–October) for

an arbitrary number of years, with individual surveys spaced ‡5 days.

Observers are guided in choosing their transect location, but only sites

are selected that are likely to contain reptiles. Transect length is about

2 km. Surveys are conducted during weather conditions favourable

for the observation of reptiles, i.e. without rain, neither too cold nor

too hot and no strong wind. Reptiles are counted up to 5 m on either

side of a transect, and each survey lasts about 2 h. Observers must

know reptiles well, but their experience is rated by the coordinator at

three increasing levels (1–3). Level 1 is for novices, level 2 for observ-

ers with at least 1 year experience and level 3 for observers with at

least 2–3 years’ experience. On average, these levels were associated

with mean sand lizard counts (see below) of 2Æ4, 4Æ0 and 7Æ1 respec-

tively. Most observers count only one transect, a few do several tran-

sects on their own and some other transects are counted by two or

sometimes three persons. Overall, for the 208 transects in our study

(see below), about 100–150 observers are involved annually.

For each survey, observers record date, start and stop time, number

of observers, temperature and wind speed. However, as not all

observers recorded temperature, and because the recorded tempera-

tures often were mere estimates, we used daily mean temperatures

recorded at the meteorological station De Bilt in the centre of

The Netherlands. As daily mean temperatures are based on registra-

tions during night and day they are on average 4Æ0 "C below the

actual temperature in the field during the observations (correlation

between daily mean temperatures and field temperature r = 0Æ684,
P = 0Æ001).

The sand lizard Lacerta agilis is a middle-sized (SVL 70–100 mm),

brown and green lizard widespread from Western Europe into

Central Asia. Preferred habitats in The Netherlands contain dry,

sandy soils, southern exposed slopes and a mosaic of living and

dead, herbaceous vegetation, open sandy patches and small bushes,

including forest edges. It is the second most widespread Dutch reptile

species, occurring widely in open, but still relatively densely vegetated

areas such as the coastal dunes and inland heaths (including road-

and railway-sides if southern exposed and supporting heather). Coast

and inland habitat differ in many respects, such as in their vegetation,

relief and aerial nitrogen load. Mating season in The Netherlands is

in April–May, egg-laying in June and young of the year do not hatch

until the end of July. The date and duration of seasonal activities

depend very much on weather conditions, especially temperature and

sunshine.

To illustrate trend estimation using the open-population binomial

mixture model, we chose sand lizard counts conducted from 1994 to

2005 at all 208 sites where the species had ever been detected between

1985 and 2005. We restricted our analysis to surveys conducted in
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spring (April–June), because the population was most probably

closed during that period and no young had yet hatched. We note

that although we model open populations we require replicate obser-

vations within a period of closure to inform estimates of detection

probability.

We used the following submodels for inference about the state

(population size) and the observation processes (detection prob-

ability) involved in the genesis of the observed counts of Dutch

sand lizards. Since a priori different population trajectories were

expected in the two regions where sand lizards occur in The

Netherlands, the coast and inland, we specified two independent

log-linear Poisson regressions as descriptions of population dynamics

at coastal and inland sites. To take account of unexplained hetero-

geneity among sites in abundance (overdispersion), we added a

normally distributed random site effect (ei) into equation 4. This

site effect allowed for additional variation in the counts beyond

that stipulated by a conditional Poisson distribution. Hence, eqn 4

became logðkikÞ ¼ aregionðiÞ þ rregionðiÞ & ðk' 1Þ þ ei,where k indexes

years as before.

As a description of the observation process giving rise to the counts

(eqn 6), we fitted separate intercepts for each year, additive effects of

region (to take account of probable different observability in the open

dunes on the coast), observer experience, and linear and quadratic

effects of both date and temperature. To allow for additional hetero-

geneity (overdispersion) among individual surveys in detection prob-

ability that was not captured by these explanatory variables, we fitted

a normally distributed random effect that differed by site, survey and

year. Thus, this overdispersion term in detection probability provided

considerable flexibility to our model for detection. (See Appendix S1

for the specification of ourmodel in the BUGS language.)

We fitted the open-population binomial mixture model in a Bayes-

ian mode of inference. That is, we combined the model just described

with prior distributions for each of its parameters to specify our prior

belief about their likely magnitudes. Markov chain Monte Carlo

(MCMC) methods were used to obtain an arbitrarily large sample of

draws from the joint posterior distribution (Brooks 2003). We chose

suitable ‘vague’, independent priors for all parameters to express the

absence of prior information about the model parameters. Specifi-

cally, we chose uniform()5, 5) distributions for loglam.coast, beta.

inland, beta.p.inland as well as for all coefficients of the day, tempera-

ture and experience covariates (see Table 1 for further explanation of

the meaning of these parameters), uniform()1, 1) distributions for

the two independent population growth rates (rcoast and rinland), and

uniform(0, 1) distributions for the year-specific intercepts of detection

probability. Finally, we chose uniform(0, 10) distributions for the

standard deviation of the two normal distributions used to account

for unexplained variation in log(abundance) and logit(detection)

respectively. To enhance convergence of the MCMC sampler, we

standardized the day and temperature covariates and truncated both

normal distributions for overdispersion effects to within the range

()20, 20); see Kéry&Royle (2009). Inspection of themarginal poster-

ior distributions for each parameter suggested that the truncation

implied by the use of uniform prior distributions did not affect our

estimates. We used WinBUGS (Spiegelhalter, Thomas & Best 2003)

to run three parallel chains with 500 000 iterations each, discarded

the first half as burn-in and thinned the remainder by one in 150 to

obtain 5001 draws of the joint posterior for inference. This led to

acceptable convergence for all structural parameters [Gelman-Rubin

statistic (Gelman & Hill 2007) R̂' 1
!! !!<0:1]. To gauge the adequacy

of themodel chosen for our data set, we computed a BayesianP-value

for a discrepancy measure constructed from summed Pearson residu-

als (see Appendix S1). Its value of 0Æ40 suggested a good fit.

Results

During 12 years (1994–2005) of the Dutch reptile monitoring

scheme, a total of 3822 sand lizard surveys were conducted

at 132 coastal and 76 inland sites. The resulting data set was

fairly imbalanced with counts available from only 51% of

all site-year combinations. Individual sites were surveyed for

1–12 (mean 6Æ2) years. Individual lizard counts ranged 0–61

(median 3), annual mean counts per site 0–41 (median 3) and

annual maximum counts per site 0–61 (median 5).

The observed average count per site and survey increased

over the years in the coastal but not in the inland region

(Fig. 1a). A conventional Poisson regression of mean counts

Table 1. Parameter estimates based on summaries of the marginal
posterior distributions (mean, SD, 2Æ5% and 97Æ5% percentiles)
under the open-population binomial mixture model fitted to Dutch
sand lizard counts (1994–2005)

Post. mean Post. SD 95% CRI

State model

loglam.coast 1Æ670 0Æ154 1Æ378, 1Æ970
beta.inland 1Æ083 0Æ241 0Æ622, 1Æ562
rcoast 0Æ082 0Æ012 0Æ058, 0Æ105
rinland 0Æ038 0Æ017 0Æ003, 0Æ074

sigma.site 1Æ229 0Æ074 1Æ094, 1Æ384

Observation model

p0[1994] 0Æ177 0Æ027 0Æ129, 0Æ234
p0[1995] 0Æ161 0Æ025 0Æ117, 0Æ211
p0[1996] 0Æ228 0Æ031 0Æ170, 0Æ290
p0[1997] 0Æ186 0Æ026 0Æ138, 0Æ241
p0[1998] 0Æ261 0Æ032 0Æ200, 0Æ324
p0[1999] 0Æ226 0Æ027 0Æ175, 0Æ283
p0[2000] 0Æ240 0Æ029 0Æ185, 0Æ301
p0[2001] 0Æ234 0Æ030 0Æ180, 0Æ297
p0[2002] 0Æ213 0Æ025 0Æ168, 0Æ264
p0[2003] 0Æ244 0Æ031 0Æ189, 0Æ308
p0[2004] 0Æ209 0Æ027 0Æ160, 0Æ264
p0[2005] 0Æ217 0Æ030 0Æ164, 0Æ280

beta.p.inland )1Æ006 0Æ182 )1Æ396, )0Æ664
bday1 0Æ116 0Æ025 0Æ066, 0Æ165
bday2 )0Æ137 0Æ022 )0Æ180, )0Æ095
btemp1 )0Æ003 0Æ026 )0Æ053, 0Æ047
btemp2 )0Æ038 0Æ016 )0Æ068, )0Æ007
bexp2 0Æ183 0Æ109 )0Æ029, 0Æ401
bexp3 0Æ644 0Æ112 0Æ426, 0Æ870
sigma.p 0Æ936 0Æ042 0Æ859, 1Æ023

Parameters are batched into those of the state model describing
structure in the expected true abundance, and those of the
observation model, describing structure in detection probability.
Notation: loglam.coast: intercept for abundance at coastal
sites, beta.inland: coefficient for inland sites (abundance), rcoast
and rinland: independent population trends at coastal and inland
sites, sigma.site: overdispersion SD (abundance), p0[1994]–
p0[2005]: mean detection probability at coastal sites for observers
of experience 1, beta.p.inland: coefficient for inland sites (detec-
tion), bday1 and bday2: linear and quadratic effects of season,
temp1 and temp2: linear and quadratic effects of temperature,
bexp2 and bexp3: effects of observer experience class 2 and 3, sig-
ma.p: overdispersion SD (detection). These parameters are the
same as those shown in the model description in the BUGS lan-
guage in Appendix S1.

1166 M. Kéry et al.

! 2009 The Authors. Journal compilation ! 2009 British Ecological Society, Journal of Applied Ecology, 46, 1163–1172



on year yielded a significant trend estimate at coastal sites only

(r̂coast ¼ 0(092, z = 2Æ46, P = 0Æ01; r̂inland ¼ 0(025, z = 0Æ73,
P = 0Æ46).
However, estimates of abundance obtained using our hierar-

chical model to correct for imperfect and variable detection

indicated that sand lizards increased in both regions, although

more so on the coast (r̂coast ¼ 0:083) than inland (Table 1

‘State model’: r̂inland ¼ 0:038; Fig. 1b).We estimated the regio-

nal difference in population trends at 0Æ044 (95% CRI 0Æ019–
0Æ068). In addition, mean local population size at inland sites

was estimated about three times higher than for coastal sites

(beta.inland = 1Æ083; Fig. 1b), although average counts were

fairly similar in both regions (Fig. 1a). Relative to a Poisson

distribution, true lizard abundances were overdispersed

(sigma.site = 1Æ229).
That lizards inland were also found to be increasing may

be partly because of different trends in average observer

experience at coastal and inland sites (Fig. 1c). Average

experience increased from 2 to 2Æ6 at coastal sites, but

decreased from 3 to 2Æ6 at inland sites between 1994 and

2005. On average, observers in experience classes 2 and 3

counted 4Æ0 and 7Æ1 sand lizards, respectively, which was

reflected also in the estimated detection probability for each

experience class (Fig. 2a–b).

We found effects of region, year, season and observer experi-

ence on, as well as unexplained survey-specific heterogeneity

in, detection probability ofDutch sand lizards (Table 1 ‘Obser-

vation model’). Lizards were less easily observed inland

(Table 1, beta.p.inland = )1Æ006; Fig. 2). Observers in experi-

ence class 1 and 2 were not statistically distinguishable

(Fig. 2a–b; Table 1, bexp2), but observers in classes 1 and 3

were (bexp3), as were those in class 2 and 3 (95% CRI for

bexp2-bexp3: 0Æ325–0Æ593). Moreover there was a suggestion

of an increased detection probability over the first few years of

the survey (Fig. 2a–b). Detection of an individual sand lizard

was easiest around day 150 (!June 1; Fig. 2c) and at national

daily mean temperatures around 15 "C, corresponding to

about 19 "C in the field (Fig. 2d), although the latter effect was

not significant (Table 1). In addition, there was heterogeneity

in detection probability that could not be ascribed to any rec-

ognized factor and was subsumed into survey-specific ‘overdi-

spersion’ effects (Table 1, sigma.p = 0Æ936).
Our modelling framework enables site-specific estimates of

the true population trajectories to be obtained (see Appen-

dix S2). Noteworthy is the smoothing of the predicted popula-

tion trajectory compared with the more ragged observed mean

counts. Another advantage of the model-based integration of

information across sites is the ability to obtain estimates of

abundance even for years where a site was not surveyed. Miss-

ing values are automatically imputed (estimated) as part of the

updating via MCMC, with full accounting for all components

of uncertainty involved. As a result, population totals can eas-

ily be estimated for subsets of, or for all surveyed sites with full

accounting for imperfect detection as well as any imbalance in

the data set. For instance, total abundance across all sampled

sites in 1994 was estimated at 3517 (95% CRI 2582–4715) and

in 2005 at 6449 (95% CRI 5174–8772) sand lizards (Fig. 1d).

This increase was estimated at 2932 (95% CRI 1467–5035),

corresponding to a proportional population increase of 86%

(95%CRI 35–151).
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Fig. 1. Comparison of Dutch coastal and
inland sites in terms of (a) mean observed
counts of sand lizards Lacerta agilis per
transect (with 1 SE), (b) trends in mean local
population size corrected for detection
probability as estimated under a binomial
mixture model, (c) mean experience class of
observers (with 1 SE), and (d) estimated total
population size across all 208 surveyed sites
estimated under our model. Open symbols,
coastal sites; solid symbols, inland sites.
Posterior means and 95% CRI are shown in
(b) and (d).
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Discussion

OPEN-POPULATION BINOMIAL MIXTURE MODELS

Wedescribe a simple, but important extension to open popula-

tions of binomial mixture models (Royle 2004a) to estimate

trends of abundance, corrected for overlooked individuals.

Ourmodel is a hierarchical model as the process generating the

observed counts is partitioned into two stochastic subpro-

cesses, the un- or only partly observed state (or biological)

process, and the observation process that depends on the

particular realization of the state process. As the quantities in

our model have an explicit biological meaning, our model is an

explicit, or mechanistic, hierarchical model (Royle & Dorazio

2008), in contrast to the mechanistically more implicit hierar-

chical models of Link & Sauer (2002), Lande et al. (2003),

Dennis et al. (2006), Ver Hoef & Jansen (2007), Cressie et al.

(2009) and many others. These latter models confound the

product of the state and the observation process, i.e. describe

the product of N and E(p) in our equations 1 and 2 as their

state process, and simple sampling variation around that

product as their observation process.

A log-linear trend as in our example is the simplest descrip-

tion of population dynamics. For the most typical question in

monitoring studies, ‘are things getting better or worse?’ (Jen-

kins, Green &Madden 2003), this is probably sufficient. How-

ever, explicitly incorporating more biological realism into the

description of interannual changes in abundance by honouring

demographic relationships may yield better inference than a

purely phenomenological population dynamics model such as

ours (de Valpine 2003; Mazzetta, Brooks & Freeman 2007;

Brooks et al. 2008). Hence, a useful further development

would be to specify a population dynamics model that incor-

porates density-dependence into the state submodel, such as

the Ricker, Gompertz or theta-logistic equations (Saether,

Engen &Matthysen 2003; Dennis et al. 2006), i.e. to embed an

explicit population dynamics model into an estimation

approach that corrects for bias introduced by imperfect detec-

tion and factors associatedwith the observation process (Buck-

land et al. 2007). This would be interesting for the two reasons

of providing better biological inference, e.g. about the preva-

lence of density-dependence, and for improved population

diagnosis, e.g. to detect a decline (de Valpine 2003). Finally, a

yetmore exciting possible future development of ourmodelling

framework would be to express interannual change directly

using demographic rates of survival and fecundity, i.e. by

imposing a Leslie matrix on the dynamics of the state process

(e.g. Besbeas et al. 2002; Buckland et al. 2007; Schaub et al.

2007). However, this would probably require the injection of

additional demographic information, for instance about fecun-

dity or survival, into the analysis or else some parameters

would not be identifiable. Alternatively, strongly informative

prior distributions may be adopted. Given suitable data, i.e.

short term, replicate observations, these and further general-

izations can all be cast within the framework of an open-popu-

lation binomial mixturemodel.

In contrast to simpler analyses that do not separate the state

and observation processes when modelling animal counts, our

model explicitly specifies trends in abundance, rather than

expected counts, by correcting for the average level as well as

any modelled non-random patterns in detection probability.

However, in a sense, we still only have an index of abundance,
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Fig. 2. Detectionprobability (posteriormeans
and SD) of Dutch sand lizards in relation
to year, region and observer experience
(experience 1: open circle, 2: open square, 3:
solid square) (a) at coastal and (b) at inland
sites, and in relation to (c) season (Julian
day) and (d) national daily average temper-
ature ("C). Predictions in (c) and (d) were
formed by averaging over year, region and
experience effects and show the posterior
mean and 95% CRI.
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as the effective sampling area associated with each transect is

not known. This would be the case even when the transect

lengths were known. How to estimate the effective sampling

area relevant for a density estimate is a widespread but under-

appreciated challenge in animal surveys. Distance sampling

(Buckland et al. 2001) or spatially explicit capture–recapture

models (Borchers &Efford 2008; Royle&Dorazio 2008, chaps

6–7) are needed when absolute density is required. In addition,

we expect individuals to move on and off the transects between

sample occasions, producing an effect similar to that of tempo-

rary emigration (Kendall, Nichols & Hines 1997). In the case

of our model, the mean of the abundance distribution applies

to the super-population of individuals that are ever exposed to

sampling. Explicitly accounting for movement-induced bias of

this sort again requires additional information in the form of

spatial encounter history data.

Although arguably a maximum likelihood implementation

of open-population binomial mixture models would be possi-

ble and might be advantageous in terms of model selection via

AIC or deviance statistics, we think that the advantages of the

Bayesian approach outweigh those of an ML approach. For

instance, the ease with which the Bayesian approach handles

error propagation for functions of parameters is compelling.

Thus, the uncertainty around the estimated difference of the

total lizard population sizes in 1994 and 2005 is obtained trivi-

ally from the MCMC output of a Bayesian analysis. In addi-

tion, we think that the average biologist will feel more

comfortable with the BUGS model code for an open-popula-

tion binomial mixture model than with, say, R code that maxi-

mizes the likelihood for the samemodel.

Predictions of population trajectories for transects with

missing years (i.e. where there are no counts in some years; see

examples in Appendix S2) provide one particularly striking

example of the flexibility of a Bayesian analysis. The imputa-

tion of such missing values given the model and the available

data happens naturally and almost as a byproduct. Indeed,

estimation of a site-specific population trajectory is possible

even for sites with counts available in a single year only. To the

degree that observations from other sites are, indeed, informa-

tive about that site, these predictions form the best possible

interpretation of the data at that site with respect to population

trends.We note that applied biologists often domuch the same

in an informal way. For instance, given a few observations

from a site on the coast, and knowing that coastal sites gener-

ally support increasing sand lizard numbers, a biologist might

informally draw similar conclusions about a site with sparse

data. The difference with our approach is that an explicit

model does this in a completely transparent way and with full

accounting for all modelled components of uncertainty, much

in contrast to an informal interpretation of the same sparse

data.

CASE STUDY: DUTCH SAND LIZARDS

Our most striking finding was the discrepancy in the inference

about population levels and trends based on raw counts

(Fig. 1a) and under our model, which corrects for imperfect

detection (Fig. 1b). We estimated sand lizards to be two to

three times more numerous at inland sites than at coastal sites,

despite similar average raw counts. In addition, after account-

ing for detection probability, sand lizards were seen to increase

also at inland sites, even though no significant trend was dis-

cernible at inland sites in the mean observed counts. These

findings should provide ample motivation to account for

imperfect detectability when making inferences about popula-

tion trends.

Not surprisingly, the site random effect for abundance intro-

duced in eqn 4 turned out to be highly significant. This effect

probably included two components of variation in abundance

that were otherwise unmodelled in our analysis: true habitat

differences in density and variation in the size of the sampled

area owing to the lack of transect standardization. We believe

that it will frequently be unrealistic to assume that the entire

variation in density among sites or over years is adequately

captured by a Poisson distribution alone and that it is impor-

tant to model part of extra-Poisson variation either explicitly

(using covariates) or implicitly (by site random effects). Alter-

natives would include the adoption of a negative-binomial dis-

tribution for abundance (Royle 2004a; but see Joseph et al.

2009) or a ‘non-parametric’, data-based representation of the

variation in density among sites (seeDorazio et al. 2008).

In spite of the number of factors affecting detection proba-

bility of Dutch sand lizards, it may be interesting to compare

some directly observable population statistic with the esti-

mated local abundance. The mean daily sand lizard count at a

site averaged 21% (range 0–71%) of the estimated local popu-

lation size, and the maximum daily sand lizard count averaged

34% (range 0–95%). This again stresses the fact that detect-

ability was far from perfect, something particularly striking in

reptiles (Kéry 2002; Brown et al. 2007; Kéry & Schmidt 2008).

As for density, there was clear evidence for random effects

on detection probability. That is, there was temporal variation

in conditions that affected detection beyondwhatwas captured

by the fixed covariates in the model, year, date, temperature

and observer experience. Again, we believe that it may be

advantageous to account for this additional source of variation

as the assumption of constant probability of detection, even

conditional on the values of measured covariates, may be

overly restrictive. Analyses not shown here suggest that

unmodelled temporal variation in detection yields a positive

bias in abundance. However, the ability to model such diffuse

variation in detection probability may well be limited by the

number of temporal replicates, which were important in the

Dutch survey. These topics deserve to be investigated further

by simulation.

There appears little data with which to compare our esti-

mates. A Dutch capture–recapture study conducted in 2001

used photo ID to estimate daily detection probabilities (as a

ratio of the average daily numbers seen and total estimated

population) at 0Æ10 in an inland heath and 0Æ27 and 0Æ16 in two

coastal dunes (A. Boere, unpublished data), fairly similar to

what we find here (Fig. 2a–b). A Swiss capture–recapture

study conducted in 2007 (C. Berney, unpublished data) esti-

mated mean first-capture probability at 0Æ18 (n = 6 occasions,
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range 0Æ06–0Æ28), again broadly comparable with estimates

from our study. That study found a very large negative trap

response, which illustrates one big advantage of the field proto-

col underlying our model: by not having to actually catch the

animals, the binomial mixture model permits much less inva-

sive sampling than does capture–recapture.

There may have been a hint of a startup effect in the Dutch

reptilemonitoring in Fig. 2a–b; detection probability appeared

to be lower during surveys in the first 4 years and only thereaf-

ter seemed to stabilize. This may be an example of the useful-

ness of explicitly accounting for detection in a model for trend

estimation, since uncorrected for, this pattern would exagger-

ate population increase. Detection was easiest during mid to

late spring; consistent with conventional wisdom that the spe-

cies is most visible during the mating season. Similarly, there

was a tendency for detection probability to be higher at med-

ium daily temperatures that was not quite significant. How-

ever, this is unsurprising since we could only use the same

national daily average for all sites. This effect suggests that liz-

ards remain more inactive at lower temperatures and behave

more concealed at higher ones. Male visibility is higher inMay

during mating and lower in April and after mid-June. Basking

females are best seen when pregnant between late May and

egg-laying in late June.

STUDY DESIGN

It is hard to give specific recommendations on study design

when analysing counts using a binomial mixture model, but

we offer some general advice. The best estimates in terms of

precision and lack of bias will clearly be achieved with a large

number of sites (R) and within-season replicates (T), with high

detection probability (p) and with as little, especially unex-

plained, variation in the system as possible (in the sense of

covariate and especially overdispersion effects that need to be

modelled). In addition, there is some interaction between these

quantities: for instance, lower p may partly be compensated

with higher T and less unexplained variation with smaller

values ofR,T or p. So how small is still enough?

Even with good-quality data, it may make little sense to fit

the model with R < 20. It is not necessary for every site to be

surveyed more than once within a season, but if the average

within-season replication (T) is much <2, biased estimates of

abundance will result (unpublished simulations). On the other

hand, T > 5 is seldom warranted and may make the within-

season closure assumption suspect.With regard to detection, it

may be questionable to fit the model with about p < 0.1.

However, these can hardly be more than extremely simplistic

rules of thumb, and much more needs to be learnt about

the performance of the binomial mixture model in ‘marginal

data situations’. Much of this can be usefully studied using

simulation. For instance, MacKenzie & Royle (2005) investi-

gated design issues for related occupancy models using simu-

lation. The binomial mixture model shares the basic structure

with this class of occupancy models, which suggests that R

should be emphasized much more than T to improve preci-

sion. Indeed, simulations can quite easily be tailored to the

particular study design and species at hand, to ensure that an

intended survey design can, indeed, yield inference of the

desired quality.

Although our analysis was able to accommodate much

nuisance variation and distortion in the main quantity of

interest (here, abundance and its trend) by allowing for ‘over-

dispersion’, it is much better to eliminate such variation from

the outset. Thus, the magnitude of the random site effect on

abundance would surely have been reduced had the transect

lengths been properly standardized, and this would have

made the uncertainty around the trend estimates smaller.

Alternatively, actual transect length could be measured and

used as an offset in the analysis and this would probably

increase precision of the trend estimates again. Similarly, for

the observation part of the model, survey duration and per-

haps average vegetation height appear promising variables to

explain some of the variation in detection probability.

Finally, our model assumes that individuals are detected

independently, so it may not be applicable to aggregated

populations (e.g. animals in flocks). Some lack of fit of a

Poisson distribution in this case may be accounted for by

introduction of an overdispersion correction in the linear

predictor of abundance, as in our analysis, or by adoption

of a Negative Binomial distribution. If most animals are

distributed in groups, then the number of groups might be

modelled instead of individuals and group size could be

used as a detection covariate.

A final issue to consider is the optimal size of the spatial sam-

ple. When that is too small, there will be movement onto and

off the sample unit, which violates the closure assumption and

will lead to a positive bias in abundance estimates. On the other

hand, when the spatial sample is too large, the assumption that

all individuals within it have the same detection probability

may be violated, which we believe would lead to a negative bias

in abundance estimates. Thus, the choice of scale of the spatial

sampling unit is an important consideration, but one where it

is difficult to give a general advice.

Conclusion

Trends, or more generally, temporal patterns in the abun-

dance of populations, are the focus of a vast number of eco-

logical studies and are crucial to ecological applications such

as monitoring schemes. Alas, the interpretation of trends

from raw counts is always complicated by imperfect detec-

tion and especially the possibility of concomitant trends in

detection, even in strongly standardized schemes. This may

bias inference unless detection probability is explicitly

accounted for. If counts are available over multiple sites and

years, and if there are within-year replicates, the open-popu-

lation binomial mixture model offers a flexible analysis

framework that explicitly corrects for variable levels of

imperfect detection. Finally, we believe that the advantages

of field protocols using repeat observations within a short-

time period are hard to overstate and we would hope that

they entice an increasing number of new studies to apply this

method of data collection.
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Appendix S1. BUGS model specification for the open-population

binomial mixture model fitted to the Dutch sand lizards as described

in the article byKéry et al. 2009.

Appendix S2. Estimates of site-specific abundance (posterior means

and SDs) of Dutch sand lizards under the open-population binomial

mixture model (black circles) and comparison with mean observed

counts for a selection of sites (blue squares; inset: site number and

region).
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